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Abstract

Markov chain Monte Carlo algorithms have impor-
tant applications in counting problems and in ma-
chine learning problems, settings that involve esti-
mating quantities that are difficult to compute ex-
actly. How much can quantum computers speed up
classical Markov chain algorithms? In this work we
consider the problem of speeding up simulated an-
nealing algorithms, where the stationary distribu-
tions of the Markov chains are Gibbs distributions
at temperatures specified according to an annealing
schedule.

We construct a quantum algorithm that both adap-
tively constructs an annealing schedule and quantum
samples at each temperature. Our adaptive anneal-
ing schedule roughly matches the length of the best
classical adaptive annealing schedules and improves
on nonadaptive temperature schedules by roughly a
quadratic factor. Our dependence on the Markov
chain gap matches other quantum algorithms and
is quadratically better than what classical Markov
chains achieve. Our algorithm is the first to combine
both of these quadratic improvements. Like other
quantum walk algorithms, it also improves on classi-
cal algorithms by producing “qsamples” instead of
classical samples. This means preparing quantum
states whose amplitudes are the square roots of the
target probability distribution.

In constructing the annealing schedule we make use
of amplitude estimation, and we introduce a method
for making amplitude estimation nondestructive at
almost no additional cost, a result that may have
independent interest. Finally we demonstrate how
this quantum simulated annealing algorithm can be
applied to the problems of estimating partition func-
tions and Bayesian inference.

1 Introduction

Grover search yields a quadratic speedup over classi-
cal exhaustive search for the problem of unstructured
search. A major challenge in quantum algorithms is
to extend this quadratic speedup to more structured
search problems. One particularly important case is
Markov chain Monte Carlo algorithms, which make
it possible to efficiently sample from the stationary
distribution of a Markov chain. Markov chain Monte
Carlo methods have applications both in Bayesian
inference, where such methods are used to sample
from a posterior distribution which might otherwise
be difficult to compute directly, and in counting prob-
lems [11, 6] via the connection between approximate
counting and sampling.

However, it is currently an open question whether
there exists a completely quantum analog of the clas-
sical Markov Chain Monte Carlo algorithm. While
quantum walks [26] yield quadratically faster mix-
ing in a variety of special cases [22], there is no gen-
eral quadratic speedup known for MCMC sampling.
Classical Markov chains are known to mix in time
O(δ−1 log(1/minxΠ(x))) [2], where δ is the spectral
gap of the Markov chain, and Π(x) denotes the sta-
tionary distribution, while in the most general case
quantum Markov chains have been shown to mix in
time O(1/

√
δ minxΠ(x)) [15]. Even though a re-

cent result [3] achieved a quadratic speedup in hit-
ting time for the problem of searching for marked
elements, the technique used there, that of quan-
tum fast-forwarding [4], will not yield a quadratic
speedup for MCMC sampling as it also scales like
O(1/minxΠ(x)). In the regime where (1/minxΠ(x))
scales with the size of the search space, the resulting
quantum scaling is exponentially worse than the scal-
ing of classical MCMC.

Indeed, there are well-known barriers to a general
quantum speedup. First, directed Markov chains are
general enough to encompass any randomized clas-
sical algorithm, but there are oracle problems, such
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as parity, for which quantum algorithms cannot ob-
tain more than a constant speedup, so any such
speedup would need to rely on structural features of
the Markov chain. Second, many natural quantum
walks that produce a classical sample do so by mea-
suring a state whose amplitudes are all nonnegative
reals, which means that they could prepare such a
state at no extra cost. Such a state is called a qsam-
ple [1] and is the coherent encoding of the stationary
distribution of the classical Markov chain. If qsam-
ples could be prepared even polynomially more slowly
than the mixing time of classical Markov chains, let
alone quadratically faster, then this would imply the
unlikely conclusion that SZK ⊆ BQP [1, 20].

As a result, there are several distinct approaches
to the problem of qsampling and state generation,
and we briefly survey these approaches in Section 1.1.
The approach that we shall employ, that of quan-
tum simulated annealing (QSA) [23, 24, 31, 32], relies
on qsampling the stationary distributions of a series
of intermediate Markov chains. Successive station-
ary distributions satisfy a “slow-varying condition”
|〈Πi|Πi+1〉|2 ≥ const, which allows these algorithms
to bound the dependence on minxΠ(x) while preserv-
ing the O(1/

√
δ) square root scaling in the spectral

gap. Such algorithms do so at the cost of also scaling
with the length of the annealing schedule ℓ, and in
this work we will show how to reduce the length ℓ.

Our work relies on two previous algorithmic re-
sults. First is the QSA algorithm of Wocjan and
Abeyesinghe [31], who showed how to qsample from
the last of a series of Markov chains. Specifically,
given a series of ℓ Markov chains such that the first
Markov chain is easy to qsample, all the spectral
gaps are lower bounded by δ, and the stationary
states have constant overlap, qsampling from the last
Markov chain can be performed using Õ(ℓ/

√
δ) to-

tal Markov chain steps. This is important because
quantum walks naturally yield reflections about the
stationary state, so this gives an efficient way to turn
the ability to reflect into the ability to qsample. How-
ever, it does not give us a good way to bound the
length ℓ. If Z =

∑
x e

−H(x) for some H(x) ≥ 0
then we can naively bound ℓ ≤ maxxH(x). A some-
what better bound is ℓ / F := log(1/Z). We use
the notation F because this quantity is called the
“free energy” in statistical physics. More precisely,
ℓ ≤ (1+F ) log log |Ω| where Ω is the state space, and
this sequence can be found knowing only a bound on
F ; see Lemma 3.2 of [25]. This linear scaling with F
cannot be improved for such nonadaptive schedules.

However, a better sequence of Markov chains can
be found if we are willing to choose them adaptively,
i.e. based on information we extract from our samples

as we run the algorithm. The second result we use is
due to Štefankovič, Vempala, and Vigoda (SVV) [25],
who gave a classical algorithm for finding adaptive
sequences of Markov chains of length Õ(

√
F ), an al-

most quadratic improvement. (Note that [8] gives a
simpler classical algorithm for finding quadratically
shorter sequences, but it requires that the Hamilto-
nian not change sign, limiting its application beyond
counting problems.) At first glance, such adaptive
algorithms appear difficult to quantize since extract-
ing information from qsamples, say in order to deter-
mine the adaptive sequence, will generally damage
the states. Indeed, the only quantum algorithm to
use SVV was Montanaro’s [18] quantum algorithm for
summing partition functions, which uses the QSA al-
gorithm of Wocjan and Abeyesinghe [31] to partially
quantize a classical algorithm for summing partition
functions. However, while [18] could use the adaptive
sequence in its quantum algorithm, it had to rely on
classical methods to compute the sequence from SVV,
which limited its quantum speedup.

Our work combines the QSA algorithm of Woc-
jan and Abeyesinghe [31] with a fully quantized ver-
sion of the work of SVV, achieving a runtime of
Õ(
√
F/δ). In other words we adaptively obtain a

sequence matching the length from SVV (i.e. ℓ =
Õ(

√
F )) while also achieving the square-root scaling

with 1/δ from previous QSA algorithms [23, 24, 31].
In doing so we show that amplitude estimation [5]
can be made nondestructive using a state restoration
scheme inspired by [28], a result we believe will be
useful in its own right.

We also show that this algorithm can be applied
both to the problem of estimating the partition func-
tion in counting problems and to the problem of
Bayesian inference, as both problems share a gen-
eral structure. In the counting problem we have a
partition function of the form Z(β) =

∑n
k=0 ake

−βk,
and we would like to estimate the quantity Z(∞) =
a0, which is hard to compute, by annealing from
Z(0). In the Bayesian inference problem we have a
prior Π0(θ) and a likelihood function L(θ), and we
would like to sample from the hard-to-compute pos-
terior distribution Π1(θ) = Π0(θ)L(θ)/Z by anneal-
ing through the intermediate distributions Πβ(θ) =
Π0(θ) exp(βL(θ))/Zβ . We obtain the following theo-
rem as our main result, which we also summarize in
Table 1.

Theorem 1 (Informal statement of main results).

1. Bayesian inference. Given a prior Π0(θ) and
a likelihood function L(θ), define distributions
Πβ(θ) ∝ Π0(θ) exp(βL(θ)) for β ∈ [0, 1]. Sup-
pose that for each β we can compute a Markov
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Problem Our Result Best Previous Result Best Classical Result

Counting Problems Õ(log |Ω|/(
√
δǫ)) Õ(log |Ω|/(

√
δǫ) + log |Ω|/δ) Õ(log |Ω|/(δǫ2))

Bayesian Inference Õ(
√

EΠ0
[L(θ)]/δ) Õ(maxθ L(θ)/

√
δ) O(maxθ L(θ)/δ)

Table 1: Summary of main results. Here δ denotes the spectral gap of the Markov chain. Letting n be
the maximum upper range for the counting problem (equivalently, the maximum value of the Hamiltonian),
typically |Ω| = Z(0) ∼ exp(n) and δ ∼ poly(n). L(θ) denotes the likelihood function for the Bayesian
inference problem and likewise corresponds to values of the Hamiltonian. Our results are formalized in
Theorems 10 and 14. The previous best [quantum] results for counting and Bayesian inference are due
to Montanaro [18] and Wocjan-Abeyesinghe [31] respectively. The classical algorithm for counting is due
to Štefankovič, Vempala and Vigoda [25] and the algorithm for Bayesian inference simply uses simulated
annealing with the nonadaptive schedule in [25].

chain Mβ with stationary distribution Πβ and
with gap ≥ δ. Then we can qsample from |Π1〉
using Õ(

√
EΠ0

[L(θ)]/δ) steps of the quantum
walks corresponding to various Mβ.

2. Estimating partition functions. Let Z(β) =∑
x e

−βH(x) with H(x) ≥ 0 and suppose again
that we have access to Markov chains Mβ

with gaps ≥ δ and stationary distributions ∝
e−βH(x). Then we can estimate Z(∞) to mul-
tiplicative error ǫ with high probability using
Õ(log(Z(0))/

√
δǫ) steps of the quantum walks

corresponding to Mβ.

These are formalized as Theorems 10 and 14.
In each case we match the schedule length of
SVV’s adaptive algorithm and the gap dependence of
Wocjan-Abeyesinghe, thus improving on all previous
algorithms. An important subroutine in our results
is a nondestructive version of amplitude estimation,
formalized below in Theorem 6 and described in de-
tail in Section 4.

We also consider applications of the partition func-
tion algorithm to representative problems from statis-
tical physics and computer science, again improving
on previous algorithms. Our results are summarized
in Table 2 and discussed in more detail in Section 5.1.

This paper is organized as follows: in the rest of
this introduction we briefly survey related work and
provide a technical overview of our work. In Sec-
tion 2 we show that there exists an adaptive cooling
schedule by slightly modifying the arguments of SVV
to also work in the Bayesian inference case. This
adaptive cooling schedule then translates into a tem-
perature schedule that is quadratically shorter than
any nonadaptive schedule in both the Bayesian in-
ference and counting problem cases. In Section 3
we describe the quantum algorithm which both con-
structs the adaptive cooling schedule and anneals to
the quantum sample at each temperature. Applying

this algorithm to Bayesian inference and the counting
problem, we establish our main result Theorem 1, for-
malized as Theorems 10 and 14. In Section 4 we de-
scribe, in detail, how to perform state restoration fol-
lowing amplitude estimation at almost no additional
cost. In Section 5.1 we consider applications of the
partition function algorithm to representative prob-
lems from statistical physics and computer science,
and in Section 5.2 we discuss warm starts for speed-
ing up Markov chain mixing times, as well as how
they have been incorporated into the algorithms of
Section 3. Our conclusion is in Section 5.3.

1.1 Related Work

Here we briefly describe alternative approaches to the
problem of qsampling and state generation, noting
some benefits and drawbacks of each approach when
compared with QSA.

• Direct generation: An approach due to Za-
lka [33], rediscovered independently by Grover
and Rudolph [7] and Kaye and Mosca [13], gener-
ates the state directly via rotations, but its scope
is limited as it is only efficient in the special case
where the probability distribution is efficiently
integrable.

• Adiabatic state generation: Aharanov and
Ta-Shma [1] offer an approach to qsampling via
adiabatic computing, but their approach scales
like O(1/δ) in the spectral gap. Thus, while it
produces qsamples instead of samples, it offers
no speedup over the classical case.

• Metropolis sampling: An approach by [28]
that relies on Metropolis sampling generalizes
qsampling to quantum Hamiltonians, but it like-
wise scales like O(1/δ) in the spectral gap. [32]
combines Metropolis sampling with QSA to ex-
tend the O(ℓ/

√
δ) scaling of QSA to quantum
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Problem Our Result Best Previous Result Best Classical Result

Counting k-colorings Õ(|V |3/2/ǫ) Õ(|V |3/2/ǫ+ |V |2) Õ(|V |2/ǫ2)
Ising model Õ(|V |3/2/ǫ) Õ(|V |3/2/ǫ+ |V |2) Õ(|V |2/ǫ2)
Counting matchings Õ(|V |3/2|E|1/2/ǫ) Õ(|V |3/2|E|1/2/ǫ+ |V |2|E|) Õ(|V |2|E|/ǫ2)
Counting independent sets Õ(|V |3/2/ǫ) Õ(|V |3/2/ǫ+ |V |2) Õ(|V |2/ǫ2)

Table 2: Summary of applications to estimating the partition function in counting problems. See the text
of section 5.1 for discussion and references.

Hamiltonians, but the scaling is otherwise equiv-
alent to that of other QSA algorithms.

• Quantum rejection sampling: In quantum
rejection sampling [21, 14, 30], to obtain tar-
get state |Π〉 we instead prepare some superpo-
sition of the desired state |Π〉 and an undesired
state |Π⊥〉 and then apply amplitude amplifica-
tion to obtain |Π〉. As [30] notes, this scheme
is generally inefficient; to deal with this, [14]
specializes to the case of distributions struc-
tured as a Bayesian network, while [30] employs
semi-classical Bayesian updating. Even then,
the algorithm of [30] still scales like O(1/

√
ǫZ)

per update in ǫ, the approximation error, and
Z, the partition function of the posterior dis-
tribution, whereas our algorithm’s scaling is ∼√
δ−1 log(1/Z) log(1/ǫ). (These scalings depend

on the normalization convention used for Z; see
Section 1.2.1.) This scaling is generally better
because δ can often be improved with a good
choice of Markov chain, and when these chains
are rapidly mixing 1/δ will be poly log(1/Z).

1.2 Technical Overview

Here we describe adaptive annealing schedules and
their application to counting problems and Bayesian
inference. Then we describe our quantum algorithm
for finding and annealing through such a schedule.

1.2.1 Adaptive Annealing Schedules for

Counting Problems and Bayesian Infer-

ence

In both the counting problem and the Bayesian in-
ference problem, we have a partition function of the
form

Z(β) =
∑

x∈Ω

e−βH(x) (1)

at inverse temperature β, with a Hamiltonian we de-
note by H(x) for some random variable x over state
space Ω. We assume that H(x) is easy to compute
(say a sum of local terms) and Ω is also a simple

set, such as {0, 1}n, although it may also be a non-
product set such as the set of permutations. Such a
partition function corresponds to the normalization
of the Gibbs distribution at inverse temperature β,
which is given by

Πβ(x) =
e−βH(x)

Z(β)
. (2)

In the counting problem of SVV [25] and Mon-
tanaro [18], the Hamiltonian takes on values k ∈
{0, . . . , n} corresponding to a discrete quantity we
would like to count, such as the number of colorings of
a graph, or the number of matchings. In Section 5.1
we give several examples of problems from statistical
physics and computer science that can be framed in
this form. In such problems we would have a parti-
tion function of the form

Z(β) =
n∑

k=0

ake
−βk, (3)

where ak = |H−1(k)|. In general we do not need the
energy function to take on only integer values but it
will be convenient to assume that 0 ≤ H(x) ≤ n for
all x.

We want to estimate the quantity Z(∞) = a0,
which is often difficult to compute, while Z(0) =∑
k ak = |Ω|, corresponding simply to the size of the

parameter space, is easy to compute. The idea is
to establish a schedule of ℓ + 1 inverse temperatures
β0, β1, . . . , βℓ, with β0 = 0 and βℓ = ∞, known as a
cooling schedule, that allows us to anneal from the
easy case of β = 0 to the hard case of β = ∞. Once
we have a cooling schedule, we can sample from the
Gibbs distribution at each inverse temperature βi,
given by

Πβi
(x) =

e−βiH(x)

Z(βi)
. (4)

Then, for x sampled from Πβi
, the quantity

Wβi,βi+1
(x) = e(βi−βi+1)H(x) (5)

has expectation value

EΠβi
[Wβi,βi+1

] =
Z(βi+1)

Z(βi)
, (6)
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so we can calculate Z(∞) as the telescoping product

Z(∞) = Z(0)
Z(β1)

Z(0)

Z(β2)

Z(β1)
. . .

Z(∞)

Z(βℓ−1)
(7)

by samplingWβi,βi+1
at each successive temperature.

In the SVV algorithm the temperature schedule is
determined adaptively using properties of logZ(β)
like convexity, so that, letting |Ω| = Z(0), the sched-
ule has length ℓ = O(

√
log |Ω| log n log log |Ω|) =

Õ(
√

log |Ω|), a quadratic improvement over the
best possible non-adaptive schedule length of
O(log |Ω| log n) = Õ(log |Ω|). Recall that n =
maxxH(x). We write Õ(f) to suppress terms that
are polylog in f , and in doing so, we assume that
log |Ω| and n are polynomially related. Our results do
not otherwise assume any relation between |Ω| and n.

Such techniques could also be applied to the prob-
lem of Bayesian inference. Bayesian inference refers
to an important paradigm in machine learning where
values are assigned to model parameters according to
a probability distribution that is updated using the
observed data; this then allows us to quantify our
uncertainty in the model parameters, as well as to
update this uncertainty. Given model parameters θ
that we wish to learn, we generally start with a prior
distribution Π0(θ) over the possible values that θ can
take, and then given data points {xi} we update our
prior distribution to obtain a posterior distribution
over θ according to Bayes’ rule:

p(θ|{xi}) =
Π0(θ)

∏
i p(xi|θ)∑

θ Π0(θ)
∏
i p(xi|θ)

. (8)

Here the normalization, the partition function Z =∑
θ Π0(θ)

∏
i p(xi|θ), is often difficult to compute

directly due to the sheer size of the parameter
space. In analogy to the counting problem, where
β parametrizes the partition function from the easy
case of Z(0) to the hard case of Z(∞), for Bayesian
inference we will define the partition function

Z(β) =
∑

θ

Π0(θ)e
−βL(θ), (9)

where the Hamiltonian corresponds to L(θ), the neg-
ative log-likelihood function, defined as

L(θ) = − log

(
∏

i

p(xi|θ)
)
. (10)

Then, in analogy to the counting problem, Z(0) is
easy to calculate as it just corresponds to

∑
θ Π0(θ) =

1, while Z(1), corresponding to the full posterior dis-
tribution, is hard to compute. As in the counting
problem, we can imagine establishing a temperature

schedule β0, β1, . . . , βℓ with β0 = 0 and βℓ = 1. Then
the Gibbs distribution at each temperature is given
by

Πβi
(θ) =

Π0(θ)e
−βiL(θ)

Z(βi)
. (11)

Note, however, that in the case of Bayesian infer-
ence we don’t need to compute the actual value of
the partition function Z(1) since we’re ultimately
interested in sampling from the posterior distribu-
tion. That is, it’s enough to just return a sample
from the last Markov chain. Thus we can in fact
think of our Bayesian inference algorithm as perform-
ing simulated annealing using the adaptive cooling
schedule as an annealing schedule. Because of the
similarities between the counting problem and the
Bayesian inference problem, we claim that we can
modify the arguments of SVV to show that there
exists a temperature schedule for Bayesian inference
of length ℓ = Õ(

√
log(1/Z(1))) = Õ(

√
EΠ0

[L(θ)]).
This schedule is quadratically shorter than the non-
adaptive annealing schedule obtained in QSA pa-
pers such as those of [23, 24, 31], where the best
result due to [31] uses inverse temperatures sepa-
rated by a constant ∆β = O(1/‖H‖) so that ℓ =
O(‖H‖) = O(maxθ L(θ)). Additionally, the depen-
dence on (1/Z(1)) is exponentially better than the
O(1/

√
Z(1)) dependence per Bayesian update in al-

gorithms based on quantum rejection sampling, like
that of [30]; however, this advantage is partially offset
by a new dependence on the gap δ.

Merely the existence of such a short temperature
schedule is not quite enough. In the next section we
will demonstrate a quantum algorithm for efficiently
finding temperature schedules of this length.

1.2.2 Quantizing Adaptive Annealing

So far our claims, that Bayesian inference can be
treated as a simulated annealing problem analogous
to counting problems, and that the annealing sched-
ule can be made quadratically shorter, have been
claims that would apply equally to both classical and
quantum settings. We additionally claim that the
computation of cooling schedules can be fully quan-
tized. Combined with the QSA algorithm of [31],
which performs quantum annealing given a cooling
schedule, this means that it is possible to fully quan-
tize both the algorithm for computing partition func-
tions in the counting problem, and the algorithm for
qsampling from the posterior distribution in Bayesian
inference. To prove this claim, we combine techniques
from [18] with a nondestructive version of amplitude
estimation.
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Montanaro’s [18] algorithm for summing partition
functions partially quantizes the SVV algorithm; the
adaptive temperature schedule itself is still computed
classically according to the SVV algorithm, but once
given an inverse temperature, the algorithm specifies
how to quantum sample at that temperature, as well
as how to efficiently compute expectation values using
those samples. Qsampling is performed according to
the QSA algorithm of Wocjan and Abeyesinghe [31],
who showed that given a sequence of ℓ slow-varying
Markov chains (i.e., the overlap between successive
stationary distributions is lower-bounded by some
constant), each with spectral gap at least δ, an ap-
proximation to the stationary distribution of the final
Markov chain can be obtained with Õ(ℓ/

√
δ) Markov

chain steps, whereas classically the dependence on ℓ
and δ would be O(ℓ/δ). Given these quantum sam-
ples, Montanaro’s algorithm then estimates expec-
tation values using an amplitude estimation based
algorithm that requires quadratically fewer samples
than would be necessary classically. Overall Monta-
naro shows that it is possible to estimate the par-
tition function with up to ǫ multiplicative error us-
ing Õ(log |Ω|/(

√
δǫ) + log |Ω|/δ) Markov chain steps,

and notes that this complexity could be improved to
Õ(log |Ω|/(

√
δǫ)) were it were possible to compute the

cooling schedule itself via quantum means. The fact
that the SVV algorithm uses a nonadaptive temper-
ature schedule as a “warm start” for the adaptive
schedule (which allows for a faster mixing time) is
cited as an obstacle to quantizing the computation of
the cooling schedule. We claim that these obstacles
can be overcome.

As in Montanaro’s algorithm, we can use the al-
gorithm of Wocjan and Abeyesinghe to sample from
the Gibbs distribution at each temperature. Addi-
tionally, we will also quantize the actual process of
computing the cooling schedule itself. Our algorithm
works as follows: since we are guaranteed the exis-
tence of the adaptive cooling schedule, we can binary
search to find the next temperature. For each binary
search candidate we can use amplitude estimation to
calculate the overlap between the candidate state and
the current state, which allows us to check whether
the slow-varying condition is satisfied. Note that am-
plitude estimation only requires that we be able to re-
flect over the candidate state, and that the quantum
walk operator provides such a reflection operator. We
also observe that all quantum measurements occur
only during the amplitude estimation step, and that
amplitude estimation can be made non-destructive
so that it’s possible to restore the post-measurement
state to the pre-measurement state at almost no ad-
ditional cost. Finally we also claim that in the quan-

tum case, the slow-varying condition itself is enough
to ensure warm-start mixing times, which ends up
simplifying one of the steps in the SVV algorithm.

Putting these claims together yields the results of
Theorem 1 and Table 1.

2 Existence of Cooling Sched-

ule

In this section we slightly modify an argument of
SVV [25] to show that there exists a cooling sched-
ule of bounded length for a partition function of the
form (1), which encompasses both (3), corresponding
to the counting problem, and (9), corresponding to
Bayesian inference. Furthermore, this cooling sched-
ule satisfies the Chebyshev condition in the case of
counting problems, and the slow-varying condition in
the case of Bayesian inference.

As noted in the previous section, the SVV algo-
rithm generates a sequence of inverse temperatures
β0, β1, . . . , βℓ with β0 = 0 and βℓ = ∞; then, given
such a schedule, the idea is to sample from the Gibbs
distribution at each temperature in order to compute
the quantities Wβi,βi+1

, whose expectation value is
the ratio of Z at successive temperatures. Taking
the telescoping product of these ratios according to
equation (7) then allows us to estimate Z(∞) starting
from Z(0).

In a B-Chebyshev cooling schedule such as that
generated by SVV, we have the additional require-
ment that the variance of Wβi,βi+1

is bounded; that
is, that

E

(
W 2
βi,βi+1

)

E
(
Wβi,βi+1

)2 =
Z(2βi+1 − βi)Z(βi)

Z(βi+1)2
≤ B (12)

for a constant B. This additional bounded variance
requirement then guarantees that the product of ex-
pectation values E[Wβ0,β1

]E[Wβ1,β2
] . . .E[Wβℓ−1,βℓ

]
will be a good approximation to the product
Wβ0,β1

Wβ1,β2
· · ·Wβℓ−1,βℓ

within a bounded number
of samples.

In the case of Bayesian inference we’re not actu-
ally trying to calculate the partition function Z(1)
(instead we want to sample from the Gibbs distribu-
tion at β = 1), so it might seem like we don’t need the
additional bounded variance condition. However, the
slow-varying condition is another property, closely re-
lated to bounded variance, which we will need. The
slow-varying condition states that |〈πβi

|πβi+1
〉|2 ≥
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1/B, since

〈πβi
|πβi+1

〉 =
Z
(
βi+βi+1

2

)

√
Z(βi)

√
Z(βi+1)

.

Then the slow-varying condition can be rewritten as

Z(βi)Z(βi+1)

Z
(
βi+βi+1

2

)2 ≤ B. (13)

We define f(β) = logZ(β) to help understand the
slow-varying and Chebyshev conditions. Note that f
is convex. Observe that when we set B = e2, both
the slow-varying condition (13) and the Chebyshev
condition (12) can be rewritten in the form

f

(
γi + γi+1

2

)
≥ f(γi) + f(γi+1)

2
− 1, (14)

where for the Chebyshev condition γi = βi and
γi+1 = 2βi+1 − βi, while for the slow-varying con-
dition γi = βi and γi+1 = βi+1. Equation (14)
should be compared with the inequality f(γi+γi+1

2 ) ≤
f(γi)+f(γi+1)

2 resulting from convexity of f .
The existence of Chebyshev and slow-varying se-

quences is then expressed by the following lemma,
which guarantees the existence of a sequence of in-
verse temperatures satisfying equation (14). We will
slightly modify the original bound that appears in
SVV, from ℓ ≤

√
(f(0)− f(1)) log(f ′(0)/f ′(γ)) to

ℓ ≤
√

(f(0)− f(1)) log(f ′(0)/(f ′(γ) + 1)), in order
for this bound to work in the case of Bayesian infer-
ence. The full proof of the lemma appears in Ap-
pendix A.

Lemma 2. (Modified from SVV [25] Lemma 4.3, Ap-
pendix A) For f a convex function over domain [0, γ],
there exists a sequence γ0 < γ1 < . . . < γℓ with γ0 = 0
and γℓ = γ satisfying

f

(
γi + γi+1

2

)
≥ f(γi) + f(γi+1)

2
− 1 (15)

with length

ℓ ≤
√

(f(0)− f(γ)) log

(
f ′(0)

f ′(γ) + 1

)
. (16)

This suggests that we can construct a Cheby-
shev cooling schedule greedily; given left endpoint γi,
choose the next endpoint by finding the largest possi-
ble right endpoint γi+1 so that the midpoint satisfies
equation (14), and Lemma 2 then guarantees an up-
per bound on the length of a schedule constructed in
this manner.

In the next section we will describe a quantum al-
gorithm for efficiently carrying out a version of this
procedure. In the remainder of this section we show
that the length of the schedule generated by this al-
gorithm, both in the case of the counting problem
and in the case of Bayesian inference, is quadrati-
cally shorter than the length of the corresponding
nonadaptive schedule.

In the case of the counting problem, SVV show
that the schedule derived from (16) ends up being
Õ(
√
log |Ω|), where typically log |Ω| ∼ poly(n) for

n = maxxH(x):

Theorem 3. (SVV [25] Theorem 4.1) For Z(β) a
partition function of the form given by equation (3),
letting |Ω| = Z(0) and assuming Z(∞) ≥ 1, there
exists a B-Chebyshev cooling schedule with B = e2,
β0 = 0, and βℓ = ∞, of length

O(log log |Ω|
√
log |Ω| log(n)) = Õ(

√
log |Ω|).

The full proof of Theorem (3) can be found in [25],
but the idea is the following. For counting problems,
where we need to anneal all the way to βℓ = ∞, it’s
enough to take βℓ−1 = γ with γ the inverse temper-
ature satisfying f(γ) = 1. This choice of γ guaran-
tees that eq. (14) is satisfied between βℓ = ∞ and
βℓ−1 = γ. Next we use Lemma (2) to note that there
exists a sequence of γ0′ , γ1′ , . . . , γℓ′ with γ0′ = γ0 = 0
and γℓ′ = γ that satisfy (14) with

ℓ′ ≤
√

log |Ω| log(n). (17)

We can see that the expression for ℓ′ comes from (16)
with log |Ω| corresponding to the f(0)−f(γ) term and
log n corresponding to the log(f ′(0)/(f ′(γ)+1)) term.
Next we need to extract the β0, . . . , βℓ−1 from the
γ0′ , . . . , γℓ′ , where β0 = γ0 = 0 and βℓ−1 = γℓ′ = γ.
SVV show that it suffices to insert additional inverse
temperatures in each interval [γi, γi+1] in the follow-
ing way:

γi, γi + (1/2)(γi+1 − γi), γi + (3/4)(γi+1 − γi),

γi + (7/8)(γi+1 − γi), . . . ,

γi + (1− 2−⌈log log |Ω|⌉)(γi+1 − γi), γi+1,

(18)

which ensures that each pair of adjacent temperatures
satisfies the Chebyshev condition (12). This adds an
additional factor of log log |Ω|, so the dominant term
is still

√
log |Ω|. SVV also show that any nonadaptive

schedule must be Ω̃(log |Ω|), so the adaptive schedule
is quadratically shorter.

In the case of Bayesian inference, we claim that
we have a similar result, where the adaptive schedule
has length ℓ = Õ(

√
log(1/Z(1))) = Õ(

√
EΠ0

[L(θ)]).
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Here the argument is more straightforward because
we can directly take the γ0, . . . , γℓ from Lemma (2)
to be the inverse temperatures β0, . . . , βℓ.

Theorem 4. For partition function Z(β) of the form
given by equation (9), there exists a temperature
schedule with B = e2, β0 = 0, and βℓ = 1, satis-
fying |〈Πβi

|Πβi+1
〉|2 ≥ 1/B, of length

O
(√

EΠ0
[L(θ)] log(EΠ0

[L(θ)])
)
= Õ

(√
EΠ0

[L(θ)]
)
.

(19)

Proof of Theorem 4. We use the result of Lemma 2
with γℓ = 1. Plugging into the expression for the
length of the cooling schedule from equation (16), we
note that f(0) = 0 and f(1) = logZ(1) so that f(0)−
f(1) = log(1/Z(1)) = − logZ(1). Note that this can
be rewritten as

− logZ(1) =− log

(
∑

θ

Π0(θ)e
−L(θ)

)

= − log
(
EΠ0(θ)

[
e−L(θ)

])
. (20)

By Jensen’s inequality, − log(E[X]) ≤ −E[log(X)],
so

log(1/Z(1)) ≤ EΠ0
[L(θ)]. (21)

We also note that f ′(0) = EΠ0(θ)[L(θ)] and f ′(1) =
EΠ1(θ)[L(θ)], where Π0(θ) denotes the prior distribu-
tion and Π1(θ) denotes the posterior distribution, so
that log(f ′(0)/(f ′(1)+1)) ≤ log(EΠ0

[L(θ)]). Putting
everything together,

ℓ = O
(√

EΠ0
[L(θ)] log(EΠ0

[L(θ)])
)

= Õ
(√

EΠ0(θ)[L(θ)]
)
. (22)

The length of the adaptive cooling schedule is
quadratically shorter than the length of nonadaptive
annealing schedules currently employed by QSA al-
gorithms such as those [23, 24, 31]. For example,
in the best result due to [31], which employs slow-
varying Markov chains to perform QSA on a sequence
of Markov chains with stationary distributions given
by

Πβ(x) =
e−βH(x)

Z(β)
, (23)

taking the inverse temperatures to be separated by a
constant ∆β = 1/‖H‖ ensures that the slow-varying
condition is preserved. Applying this to Bayesian
inference, where we have x = θ with θ ∼ Π0(θ),
H(θ) = L(θ), and β that we anneal between 0 and
1, we end up with a nonadaptive schedule of length
O(maxθ L(θ)).

3 Construction of Cooling

Schedule and Quantum Al-

gorithm Details

We now give a quantum algorithm that adaptively
constructs the cooling schedule from the previous sec-
tion. As it does so, it simultaneously produces the
quantum state corresponding to the Gibbs distribu-
tion at the current inverse temperature in the sched-
ule construction process. In the case of Bayesian in-
ference, obtaining the state at the final inverse tem-
perature corresponds to qsampling from the posterior
distribution. For the counting problem, sampling at
each inverse temperature allows us to estimate the
telescoping product (see equation (7)) corresponding
to the partition function Z(∞).

To do so we will need the following result of Wocjan
and Abeyesinghe [31], as restated by Montanaro [18],
which shows that it is possible to quantum sample
given access to a sequence of slow-varying Markov
chains:

Theorem 5. (Wocjan and Abeyesinghe [31], restated
as Montanaro [18] Theorem 9) Assume that we have
classical Markov chains M0, . . . ,Mℓ with stationary
distributions Π0, . . . ,Πℓ that are slow-varying; that
is to say, they satisfy |〈Πi|Πi+1〉|2 ≥ p for all i =
0, .., ℓ− 1. Let δ lower bound the spectral gaps of the
Markov chains, and assume that we can prepare the
starting state |Π0〉. Then, for any ǫ > 0, there is
a quantum algorithm that produces a quantum state
that is ǫ-close to |Πℓ〉 and uses

O
(
ℓ
√
δ−1 log2(ℓ/ǫ)(1/p) log(1/p)

)

total steps of the quantum walk operators Wi corre-
sponding to the Markov chains Mi.

As we stated in the previous section, satisfying the
slow-varying condition takes the same form as satis-
fying the Chebyshev condition for a cooling schedule.
We can also easily prepare the starting state |Π0〉
using a result of [33, 7, 13], who showed that it is
possible to efficiently create the coherent encoding

∑

i

√
pi |i〉

of the discretized version {pi} of a probability dis-
tribution p(x), provided that p(x) can be efficiently
integrated classically (for example, by Monte Carlo
methods). For counting problems, |Π0〉 is just the
uniform distribution, which can be easily integrated.
For Bayesian inference we make a choice of prior that
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can be integrated classically, allowing us to easily pre-
pare |Π0〉. A recent review of other state-preparation
methods can be found in [27]; see also [1].

Now we describe how to proceed to the next state
|Πβi+1

〉 assuming that we already have the state
|Πβi

〉. According to the procedure described in the
previous section, we’d like to find the largest βi+1 so
that |〈Πβi+1

|Πβi
〉|2 ≥ p in the case of Bayesian infer-

ence, and |〈Π2βi+1−βi
|Πβi

〉|2 ≥ p for counting prob-
lems. To do so we will binary search for βi+1 in the
Bayesian case, and 2βi+1−βi in the counting problem
case, computing the overlap for the state |Πβ′〉 corre-
sponding to each candidate inverse temperature β′ to
see if |〈Πβ′ |Πβi

〉|2 ≥ p is satisfied. Note that we can’t
actually produce each state |Πβ′〉 since being able to
anneal to this state would require that it already sat-
isfy the slow-varying condition. Luckily, being able to
reflect about |Πβ′〉 suffices, and quantum walks will
give us the ability to perform this reflection. When
we estimate the overlap we also need to make sure
that the state |Πβi

〉 is not destroyed, and we en-
sure this by computing the overlap between |Πβi

〉 and
|Πβ′〉 using a form of amplitude estimation that has
been made nondestructive. This will be doubly use-
ful in the case of counting problems, where to calcu-
late Z(∞) we will need to estimate expectation values
E[Wβi,βi+1

] at intermediate temperatures without de-
stroying the corresponding state, which we then con-
tinue annealing to the next temperature. In Section
4 we describe the amplitude estimation algorithm of
Brassard, Hoyer, Mosca, and Tapp (BHMT) [5] and
demonstrate how the starting state can be restored
at almost no additional cost in the number of Markov
chain steps required. The nondestructive amplitude
estimation algorithm can be summarized as follows:

Theorem 6 (Nondestructive amplitude estimation).
Given state |ψ〉 and reflections Rψ = 2 |ψ〉 〈ψ|−I and
R = 2P − I, and any η > 0, there exists a quantum
algorithm that outputs ã, an approximation to a =
〈ψ|P |ψ〉, so that

|ã− a| ≤ 2π
a(1− a)

M
+

π2

M2

with probability at least 1−η and O(log(1/η)M) uses
of Rψ and R. Moreover the algorithm restores the
state |ψ〉 with probability at least 1− η.

This is proved in Section 4.
To perform amplitude estimation we will need to be

able to perform the reflections Rψ = 2 |Πβi
〉 〈Πβi

|− I
and R = 2P − I = 2 |Πβ′〉 〈Πβ′ | − I. The following
theorem due to Magniez, Nayak, Roland, and Santha
(MNRS) [15] allows us to approximate these reflec-
tions.

Theorem 7. (MNRS [15] Theorem 6) Suppose that
we wish to approximate the reflection R = 2 |Π〉 〈Π|−
I about |Π〉, where |Π〉 is the coherent encoding of Π,
the stationary distribution of Markov chain M with
spectral gap δ. Then there is a quantum circuit R̃
so that for |Ψ〉 orthogonal to |Π〉, ‖(R̃ + I) |Ψ〉 ‖ ≤
21−k, and R̃ uses O(k/

√
δ) steps of the quantum walk

operator W corresponding to M .

In the amplitude estimation algorithm we need to
be able to perform O(log(1/η)M) applications of the
Grover search operator Q = −RψR (see Section 4
for more details), but instead we have access to an
approximation Q̃ = −R̃ψR̃. We claim that this error
can be bounded using the following observation.

Lemma 8. Let R̃ψ and R̃ be the respective approx-
imations to Rψ = 2 |ψ〉 〈ψ| − I and R = 2P − I
given by the algorithm of Theorem 7. Then, let-
ting Q = −RψR with approximation Q̃ = −R̃ψR̃,
and letting state |ψ′〉 ∈ span{|ψ〉 , Im(P )}, the error
in using approximate reflections can be bounded as
‖Qi |ψ′〉 − Q̃i |ψ′〉 ‖ ≤ i22−k.

Proof of Lemma 8. By induction. The i = 1 case
follows from Theorem 7. Assume ‖Qi−1 |ψ′〉 −
Q̃i−1 |ψ′〉 ‖ ≤ (i−1)22−k. Then ‖Qi |ψ′〉− Q̃i |ψ′〉 ‖ ≤
‖Qi−1 |ψ′〉 − Q̃i−1 |ψ′〉 ‖ + ‖(Q − Q̃)Qi |ψ′〉 ‖ ≤
i22−k.

Using Lemma 8, we can then restate the result on
nondestructive amplitude estimation using approxi-
mate reflections.

Theorem 9. (Nondestructive amplitude estimation
using approximate reflections) Given state |ψ〉, an ap-
proximation R̃ψ to reflection Rψ = 2 |ψ〉 〈ψ| − I, an

approximation R̃ to reflection R = 2P − I, and any
η > 0, where all approximate reflections are given
by Theorem 7, there exists a quantum algorithm that
outputs ã, an approximation to a = 〈ψ|P |ψ〉, so that

|ã− a| ≤ 2πa(1− a)ǫ+ π2ǫ2

with probability at least 1− η. The algorithm restores
the state |ψ〉 with probability at least 1 − η and re-
quires O(1/(ǫ

√
δ) log(1/ǫ) log(1/η)) steps of the quan-

tum walk operators corresponding to R̃ψ and R̃, where
δ lower bounds the spectral gaps of the corresponding
Markov chains.

Proof of Theorem 9. The algorithm for nondestruc-
tive amplitude estimation (see Theorem 6 and Sec-
tion 4) requires the ability to generate the state
QM |ψ〉. By Lemma 8 we know that we can generate
an approximation Q̃M |ψ〉 with ‖QM |ψ〉−Q̃M |ψ〉 ‖ ≤
M22−k. Taking k = logM + c then ensures that
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this error is bounded by a constant. Finally, calling
ǫ = 1/M , we note that amplitude estimation occurs
with error O(ǫ) if we require O(1/ǫ log(1/η)) uses of
R̃ψ and R̃. With our choice of k, each use of R̃ψ and R̃

requires O(log(1/ǫ)/
√
δ) Markov chain steps, so the

algorithm requires O(1/(ǫ
√
δ) log(1/ǫ) log(1/η)) total

Markov chain steps.

Having described everything we need—the QSA al-
gorithm, the binary search, and nondestructive am-
plitude estimation—we will now put everything to-
gether. The result will be two fully quantum al-
gorithms, one for constructing an adaptive sched-
ule and qsampling from the posterior distribution for
Bayesian inference, and another for constructing an
adaptive schedule and calculating Z(∞) for counting
problems.

3.1 QSA for Bayesian Inference

The quantum algorithm for Bayesian inference is
given by the following.

Algorithm 1 QSA for Bayesian inference.

Input: State |Π0〉 =
∑
x

√
Π0 |x〉, the coherent en-

coding of the prior distribution, constant p > 0, and
constant η > 0.
Output: State |Π̃1〉, an approximation to the
coherent encoding of the posterior distribution,
and temperature schedule β0, β1, . . . , βℓ with β0 =
0 and βℓ = 1 so that |〈Πβi

|Πβi+1
〉| ≥

p.

1: for i:=1 to ℓ = O
(√

EΠ0
[L(θ)] log(EΠ0

[L(θ)])
)

do

2: At current inverse temperature βi with state
|Πβi

〉,
3: repeat

4: Binary search on β′ ∈ [βi, 1] with precision
1/(maxθ L(θ)).

5: Perform nondestructive amplitude estima-
tion to calculate |〈Πβi

|Πβ′〉|2 with error ǫe =
p/10 and failure probability η/(ℓmaxθ L(θ)).

6: until |〈Πβi
|Πβ′〉|2 ≥ p.

7: Anneal from |Πβi
〉 to |Πβi+1

〉 at inverse tem-
perature βi+1 = β′.

8: end for

9: Return |Πβℓ
〉.

For simplicity the above algorithm refers in each
case to the ideal state, e.g. we write “Return |Πβℓ

〉”
to mean that we return the state which approximates
|Πβℓ

〉.

Theorem 10 (Quantum adaptive annealing algo-
rithm for Bayesian inference). Assume that we are
given a prior distribution Π0(θ) and a likelihood func-
tion L(θ), so that we can parametrize the partition
function Z(β) =

∑
θ Π0(θ)e

−βL(θ) at each inverse
temperature β ∈ [0, 1]. Assume that we can generate
the state |Π0〉 corresponding to the coherent encoding
of the prior, and assume that for every inverse tem-
perature β we have a Markov chain Mβ with station-
ary distribution Πβ and spectral gap lower-bounded
by δ. Then, for any ǫ > 0, η > 0, there is a quan-
tum algorithm that, with probability at least 1 − η,
produces state |Π̃1〉 so that ‖ |Π̃1〉 − |Π1〉 ‖ ≤ ǫ for
|Π1〉 the coherent encoding of the posterior distribu-
tion Π1(θ) = Π0(θ)e

−L(θ)/Z(1). The algorithm uses

O
(√

EΠ0
[L(θ)] log(EΠ0

[L(θ)])

log2(
√

EΠ0
[L(θ)] log(EΠ0

[L(θ)])/(ǫ
√
δ))

log(max
θ
L(θ)) log(

√
EΠ0

[L(θ)] log(EΠ0
[L(θ)])

max
θ
L(θ)/η)

)
= Õ(

√
EΠ0

[L(θ)]/δ)

total steps of the quantum walk operators correspond-
ing to the Markov chains Mβ.

Proof of Theorem 10. From Theorem 4 we know that
the annealing schedule has length

ℓ = O
(√

EΠ0
[L(θ)] log(EΠ0

[L(θ)])
)
.

From Theorem 5 we know that, given a sequence of
ℓ inverse temperatures {βi} with stationary distribu-
tions that satisfy |〈Πβi

|Πβi+1
〉|2 ≥ p for a constant

p > 0, quantum annealing to the state at the final
temperature βℓ takes

O(ℓδ−1/2 log2(ℓ/ǫ)(1/p) log(1/p))

total steps of the quantum walk operators corre-
sponding to the Mβi

.
Since we simultaneously construct the schedule and

anneal our state on the fly, we also need to account
for the cost of constructing the schedule. At each in-
verse temperature βi we perform binary search to find
inverse temperature βi+1 satisfying |〈Πβi

|Πβi+1
〉|2 ≥

p in the interval [βi, 1]. We choose binary search
precision 1/(maxθ L(θ)) since Πβ ∝ e−βL(θ), which
means that the binary search procedure contributes
a factor of log(maxθ L(θ)) to the complexity. For
each candidate inverse temperature β′ in the binary
search, we perform nondestructive amplitude estima-
tion to calculate |〈Πβi

|Πβ′〉|2. We set the failure
probability of nondestructive amplitude estimation
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to η/(ℓmaxθ L(θ)). From Theorem 9, we can esti-
mate |〈Πβi

|Πβ′〉|2 ≥ p with error that is O(ǫe) us-

ing O(1/(ǫe
√
δ) log(1/ǫe) log(ℓmaxθ L(θ)/η)) Markov

chain steps. Since we take ǫe = p/10, our binary
search then guarantees that we can find a sequence
of ℓ inverse temperatures satisfying |〈Πβi

|Πβi+1
〉|2 ≥

9p/10 with a total cost of

O(ℓδ−1/2 log(max
θ
L(θ))(1/p) log(1/p) log(ℓ(max

θ
L(θ))/η))

total Markov chain steps. Adding the two contribu-
tions from constructing the schedule and annealing
the state, we get a total cost of

O(ℓδ−1/2 log(max
θ
L(θ)) log2(ℓ/ǫ)(1/p) log(1/p)

log(ℓ(max
θ
L(θ))/η)) = Õ(

√
EΠ0

[L(θ)]/δ)

Markov chain steps.

3.2 QSA for Counting Problems

In counting problems, we’d like to calculate Z(∞) ac-
cording to the telescoping product given by (7), which
means that we need to sample and estimate an expec-
tation value E[Wβi,βi+1

] at each inverse temperature
βi, where Wβi,βi+1

is given by equation (6). Com-
puting the expectation value can be done using the
amplitude estimation based algorithm of Montanaro,
and moreover it can be made nondestructive using
nondestructive amplitude estimation. This is Algo-
rithm 4 of [18], which estimates an expectation value
E(X) assuming bounded variance Var(X)/(E(X))2 ≤
B. Note that the bounded variance condition of Al-
gorithm 4 is satisfied using the Chebyshev condition
of Equation 12.
Thus we would expect a cost both in terms of the

number of Markov chain steps required and in terms
of the number of samples required, where the sample
cost is incurred by the calculation of the expectation
values, while the Markov chain cost is incurred both
in the computation of the temperature schedule itself,
and in the calculation of expectation values given the
inverse temperatures.

The quantum algorithm for approximating Z(∞)
is as follows. Note that in Line 5 we perform non-
destructive amplitude estimation to determine the
next temperature in the schedule, while in Lines 10,
13, and 16 we perform nondestructive amplitude es-
timation using Algorithm 4 of [18] to estimate the
E[Wβi,βi+1

], which we then multiply together at the
end to obtain an estimate for the partition function.
The proof of correctness of this algorithm is in The-
orem 14.

Algorithm 2 QSA for computing partition functions
for counting problems.

Input: Descriptions of state space Ω and energy
function H : Ω 7→ R+. Constant B > 0, bound
n ≥ maxxH(x), error ǫ = O(1/

√
log log |Ω|), failure

probability η > 0, and Õ(B
√
log |Ω|/ǫ) copies of

state |Π0〉 := |Ω|−1/2
∑
x∈Ω |x〉.

Output: Z̃, an ǫ-approximation to Z(∞),
and B-Chebyshev cooling schedule β0 =
0, β1, . . . , βℓ = ∞ satisfying logZ(βℓ−1) =
1.

1: for i:=1 to O(
√
log |Ω| log(n)) do

2: At current inverse temperature βi with states
|Πβi

〉,
3: repeat

4: Binary search on β′ ∈ [βi, γ] with precision
1/n.

5: Perform nondestructive amplitude estima-
tion to estimate |〈Πβi

|Πβ′〉|2 with er-
ror ǫe = p/10 and failure probability
η/(n log log n

√
log |Ω| log(n)).

6: until our estimate satisfies |〈Πβi
|Πβ′〉|2 ≥

1/B.
7: Set βi+m+1 = (βi+β

′)/2 for m = ⌈log log |Ω|⌉.

8: for j:=1 to m = ⌈log log |Ω|⌉ do

9: Set βi+j = βi + (1− 2−j)(βi+m+1 − βi)
10: Perform Algorithm 4 of [18] on states

|Πβi+j−1
〉 using nondestructive amplitude es-

timation with error ǫe = ǫ and failure prob-
ability η/(n log log n

√
log |Ω| log(n)) to esti-

mate E[Wβi+j−1,βi+j
].

11: Anneal from states |Πβi+j−1
〉 to states

|Πβi+j
〉.

12: end for

13: Perform Algorithm 4 of [18] on states |Πβi+m
〉

using nondestructive amplitude estimation
with error ǫe = ǫ and failure probabil-
ity η/(n log log n

√
log |Ω| log(n)) to estimate

E[Wβi+m,βi+m+1
].

14: Anneal from states |Πβi+m
〉 to states |Πβi+m+1

〉.
15: end for

16: Perform Algorithm 4 of [18] on states |Πγ〉
using nondestructive amplitude estimation
with error ǫe = ǫ and failure probabil-
ity η/(n log log n

√
log |Ω| log(n)) to estimate

E[Wγ,∞].

17: Return Z̃ =
∏ℓ−1
i=0 E[Wβi,βi+1

]

As in Algorithm 1 we use notation that ignores the
errors in our estimates. Specifically, in the last line we
write E[Wβi,βi+1

] to mean our estimates of this that
we have computed in lines 10, 13, and 16. Likewise
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we refer to various states |Πβ〉 while our algorithm
actually has access to approximate versions of those
states.

The following theorem due to Montanaro [18] spec-
ifies how many total qsamples are needed to calculate
Z(∞).

Theorem 11 (Montanaro [18] Theorem 8). Given a
counting problem partition function Z(β) and a B-
Chebyshev cooling schedule β0, β1, . . . , βℓ with β0 = 0
and βℓ = ∞, and assuming the ability to qsample
from each Gibbs distribution Πβi

, there is a quantum

algorithm which outputs an estimate Z̃ of Z(∞) such
that

Pr
[
(1− ǫ)Z(∞) ≤ Z̃ ≤ (1 + ǫ)Z(∞)

]
≤ 3/4

using

O

(
Bℓ log ℓ

ǫ
log3/2

(
Bℓ

ǫ

)
log log

(
Bℓ

ǫ

))

qsamples at each Πβi
, which corresponds to

O

(
Bℓ2 log ℓ

ǫ
log3/2

(
Bℓ

ǫ

)
log log

(
Bℓ

ǫ

))
= Õ(Bℓ2/ǫ)

qsamples in total.

The cost in terms of quantum walk steps needed
can be split up into two parts: the cost of computing
the schedule itself (that is, determining the inverse
temperatures and annealing through them), and the
cost of computing the expectation values in order to
estimate Z(∞) (that is, given each inverse tempera-
ture). The following theorem due to Montanaro [18]
specifies the total Markov chain steps needed to es-
timate the expectation values given a temperature
schedule.

Theorem 12. (Montanaro [18] Theorem 11) Given
a counting problem partition function Z(β), a B-
Chebyshev cooling schedule β0, β1, . . . , βℓ with β0 = 0
and βℓ = ∞, and a series of Markov chains with
stationary distributions Πβi

and spectral gap lower
bounded by δ, and assuming the ability to qsample
from Π0, for any η > 0 and ǫ = O(1/

√
log ℓ) there

exists a quantum algorithm which uses

O((ℓ2/
√
δǫ) log5/2(ℓ/ǫ) log(ℓ/η) log log(ℓ/ǫ))

= Õ(ℓ2/
√
δǫ)

steps of the quantum walk operators corresponding
to the Markov chains and outputs Z̃, an estimate of
Z(∞) such that

Pr
[
(1− ǫ)Z(∞) ≤ Z̃ ≤ (1 + ǫ)Z(∞)

]
≥ 1− η.

We claim that analogous to the case of Bayesian
inference, the construction of the schedule itself can
be completed with Õ(

√
ℓ/δ) Markov chain steps:

Theorem 13. Given the counting problem partition
function Z(β) =

∑n
k=0 ake

−βk with |Ω| =
∑n
k=0 ak

and n = maxxH(x), assume that we can gener-
ate state |Π0〉 corresponding to the uniform distribu-
tion over Ω. Letting γ be the temperature at which
logZ(γ) = 1, assume also that for every inverse tem-
perature β ∈ [0, γ] we have a Markov chain Mβ with
stationary distribution Πβ and spectral gap lower-
bounded by δ. Then, for any ǫ > 0, η > 0, there is a
quantum algorithm (Algorithm 2, lines 1–15) which

anneals through the sequence of states |Π̃βi
〉 so that

‖ |Π̃βi
〉 − |Πβi

〉 ‖ ≤ ǫ for |Πβi
〉 the coherent encoding

of the Gibbs distribution at inverse temperatures βi.
The algorithm uses

O
(
log log |Ω|

√
log |Ω| log(n)δ−1/2 log2(

√
log |Ω| log(n)/ǫ)

log n log(n log log n
√
log |Ω| log(n)/η)

)

= Õ(
√

(log |Ω|)/δ)

total steps of the quantum walk operators correspond-
ing to the Markov chains Mβ.

Proof of Theorem 13. According to Theorem 3, the
B-Chebyshev cooling schedule has length

ℓ = O
(
log log |Ω|

√
log |Ω| log(n)

)
.

From Theorem 5 we know that, given a sequence of
ℓ inverse temperatures {βi} with stationary distribu-
tions that satisfy |〈Πβi

|Πβi+1
〉|2 ≥ p for a constant

p > 0, quantum annealing through the sequence of
states |Πβi

〉 corresponding to the Gibbs distributions
Πβi

at each inverse temperature βi takes

O(ℓδ−1/2 log2(ℓ/ǫ)(1/p) log(1/p))

total steps of the quantum walk operators cor-
responding to the Mβi

. Note that here, un-
like in the case of Bayesian inference, we need
to show that |〈Πβi

|Πβi+1
〉|2 ≥ p is satisfied as

the B-Chebyshev condition instead guarantees that
|〈Πβi

|Π2βi+1−β〉|2 ≥ 1/B is satisfied. But we claim
that satisfying the latter is enough to satisfy the
former. To see this, note that |〈Πβi

|Π2βi+1−β〉|2 ≥
p is equivalent to the B-Chebyshev condition with
B = 1/p, and that the B-Chebyshev condition can
be rewritten as

Z(βi)Z(2βi+1 − βi)

Z(βi+1)2
=
∑

x∈Ω

Πβi+1
(x)2

Πβi
(x)

≥ 1

p
. (24)
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The overlap 〈Πβi
|Πβi+1

〉 which appears in the slow-
varying condition can be rewritten as

〈Πβi
|Πβi+1

〉 =
∑

x∈Ω

Πβi+1
(x)

√
Πβi

(x)

Πβi+1
(x)

≥ 1√∑
x∈Ω Πβi+1

(x)
Πβi+1

(x)

Πβi
(x)

=
√
p

(25)

where we obtain the inequality from Jensen’s inequal-
ity in the form 1/

√
E[X] ≤ E[1/

√
X].

Since we simultaneously construct the schedule and
anneal our state on the fly, we also need to account for
the cost of constructing the schedule. At each inverse
temperature βi we perform binary search to find tem-
perature 2βi+1 − βi satisfying |〈Πβi

|Π2βi+1−βi
〉|2 ≥ p

in the interval [βi, γ]. We choose binary search pre-
cision 1/n since Πβ ∝ e−βk for k ∈ {0, n}, which
means that the binary search procedure contributes
a factor of log n to the complexity. For each can-
didate inverse temperature β′ in the binary search,
we perform nondestructive amplitude estimation to
calculate |〈Πβi

|Πβ′〉|2. We set the failure probability
of amplitude estimation to be η/(nℓ). From Theo-
rem 9, we can estimate |〈Πβi

|Πβ′〉|2 ≥ p with error

that is O(ǫe) using O(1/ǫe log(1/ǫe) log(nℓ/η)/
√
δ)

Markov chain steps. Since we take ǫe = p/10, our
binary search then guarantees that we can find a
sequence of ℓ inverse temperatures satisfying both
|〈Πβi

|Π2βi+1−βi
〉|2 ≥ 9p/10 and |〈Πβi

|Πβi+1
〉|2 ≥

9p/10 with a total cost of

O(ℓδ−1/2 log n(1/p) log(1/p) log(nℓ/η))

total Markov chain steps. Adding the two contribu-
tions from constructing the schedule and annealing
the state, we get a total cost of

O(ℓδ−1/2 log n log2(ℓ/ǫ)(1/p) log(1/p) log(nℓ/η))

= Õ(
√

(log |Ω|)/δ)

Markov chain steps.

Adding these two contributions to the total num-
ber of Markov chain steps required (and noting that
O(Bℓ/ǫ) samples are needed at each of the ℓ in-
verse temperatures), we get a total complexity of
Õ((log |Ω|)/

√
δǫ), where ǫ is the error in computing

the approximation to Z(∞). Thus we can finally
state the following for the counting problem:

Theorem 14 (Quantum adaptive annealing algo-
rithm for computing partition functions for count-
ing problems). Given the counting problem partition

function Z(β) =
∑n
k=0 ake

−βk with |Ω| = ∑n
k=0 ak

and n = maxxH(x), assume that we can gener-
ate state |Π0〉 corresponding to the uniform distribu-
tion over Ω. Letting γ be the temperature at which
logZ(γ) = 1, assume also that for every inverse tem-
perature β ∈ [0, γ] we have a Markov chain Mβ with
stationary distribution Πβ and spectral gap lower-

bounded by δ. Then, for any ǫ = O(1/
√

log log |Ω|)
and any η > 0, there is a quantum algorithm (Algo-
rithm 2) that uses

O((ℓ2/
√
δǫ) log5/2(ℓ/ǫ) log(ℓ/η) log log(ℓ/ǫ))

+O((ℓ/ǫ)ℓδ−1/2 log n log2(ℓ/ǫ) log(nℓ/η))

= Õ((log |Ω|)/
√
δǫ)

steps of the Markov chains and outputs Z̃, an approx-
imation to Z(∞) such that

Pr
[
(1− ǫ)Z(∞) ≤ Z̃ ≤ (1 + ǫ)Z(∞)

]
≥ 1− η.

In Section 5.1 we give several examples of partition
function problems, and we evaluate the runtime of
our algorithm on these examples.

4 Nondestructive Amplitude

Estimation

In this section we first describe the amplitude estima-
tion algorithm of Brassard, Hoyer, Mosca, and Tapp
(BHMT) [5], and then we show how it can be made
nondestructive. The result of BHMT can be stated
as follows:

Theorem 15. (BHMT [5] Theorem 12) Given state
|ψ〉 and reflections Rψ = 2 |ψ〉 〈ψ|−I and R = 2P−I,
there exists a quantum algorithm that outputs ã, an
approximation to a = 〈ψ|P |ψ〉, so that

|ã− a| ≤ 2π
a(1− a)

M
+

π2

M2

with probability at least 8/π2 and M uses of Rψ and
R.

In amplitude estimation we are interested in the
eigenspectrum of the Grover search operator, given
by

Q = −RψR. (26)

We can decompose our original Hilbert space into
H1 = Im(P ) and its complement H0. Writing |ψ〉
as

|ψ〉 = sin θ |ψ1〉+ cos θ |ψ0〉 (27)
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for |ψ1〉 ∈ H1 and |ψ0〉 ∈ H0, we note that on the
space spanned by {|ψ1〉 , |ψ0〉}, Q acts as

Q =

(
cos(2θ) sin(2θ)
− sin(2θ) cos(2θ)

)
. (28)

This matrix has eigenvalues e±2iθ with corresponding
eigenvectors

|ψ±〉 =
1√
2
(|ψ1〉 ± i |ψ0〉). (29)

Since a = 〈ψ|P |ψ〉 = sin2 θ, estimating the eigen-
values of Q allows us to estimate a. To estimate the
eigenvalues of Q, BHMT define the Fourier transform

FM : |x〉 7→ 1√
M

M−1∑

y=0

e2πixy/M |y〉 (30)

and the state

|SM (ω)〉 = 1√
M

M−1∑

y=0

e2πiωy |y〉 . (31)

Then performing F−1
M |SM (ω)〉 and measuring in the

computational basis allows us to perform phase es-
timation. Explicitly, according to BHMT Theorem
11,

Theorem 16. (Phase estimation, BHMT Theorem
11) Let y be the random variable corresponding to
the result of measuring F−1

M |SM (ω)〉. If Mω is an
integer, then Pr [y =Mω] = 1. Otherwise,

P

(∣∣∣ y
M

− ω
∣∣∣ ≤ 1

M

)
≥ 8

π2
. (32)

Finally, we will also need to define the operator

ΛM (U) : |j〉 |y〉 7→ |j〉U j |y〉 . (33)

Now we can state the amplitude estimation algo-
rithm:

Algorithm 3 Amplitude estimation algorithm.

Input: State |ψ〉 and operators Rψ = 2 |ψ〉 〈ψ| − I
and R = 2P − I.
Output: ã, an estimate of 〈ψ|P |ψ〉.

1: Start with state |0〉 |ψ〉.
2: Apply operator (F−1

M ⊗ I)ΛM (Q)(FM ⊗ I).
3: Measure first register to obtain either state

|y〉 |ψ+〉 or |y〉 |ψ−〉.
4: Return ã = sin2(πy/M).

We can boost the success probability of amplitude
estimation using the powering lemma [12], which im-
proves the amplitude estimation success probability
of 8/π2 to 1− η for any η > 0 at the cost of an extra
O(log 1/η) factor.

Lemma 17. (Powering lemma [12]) Suppose we
have an algorithm that produces an estimate µ̃ of
µ so that |µ − µ̃| < ǫ with some fixed probability
p > 1/2. Then for any η > 0, repeating the algo-
rithm O(log 1/η) times and taking the median suffices
to produce µ̃ with |µ− µ̃| < ǫ with probability at least
1− η.

This allows us to state the following version of am-
plitude estimation with powering:

Algorithm 4 Amplitude estimation with powering.

Input: State |ψ〉, operators Rψ = 2 |ψ〉 〈ψ| − I and
R = 2P − I, and η > 0.
Output: ã, an estimate of 〈ψ|P |ψ〉.

1: Start with state |ψ〉.
2: for i:=1 to q = O(log(1/η)) do
3: Add a new register |0〉i.
4: Apply operator (F−1

M ⊗ I)ΛM (Q)(FM ⊗ I) on
subsystem |0〉i |ψ〉.

5: end for

6: Add register |0〉q+1 and apply the function that
maps the median of the first q registers to this
register.

7: Uncompute the first q registers.
8: Measure (q + 1)-st register to obtain median ym.

9: Return ã = sin2(πym/M).

After performing amplitude estimation, we’d like
to restore our state to the initial starting state. To
do so, we start by observing that we can rewrite the
state |ψ〉 as

|ψ〉 = 1√
2
(e−iθ |ψ+〉+ eiθ |ψ−〉). (34)

Then applying the operator of step 2 of Algorithm 3
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yields the following sequence of states:

((F−1
M ⊗ I)ΛM (Q)(FM ⊗ I)) |0〉 |ψ〉

= ((F−1
M ⊗ I)ΛM (Q)(FM ⊗ I))

(
1√
2
|0〉 (e−iθ |ψ+〉

+eiθ |ψ−〉)
)

= ((F−1
M ⊗ I)ΛM (Q))


 1√

2M

M−1∑

j=0

|j〉 (e−iθ |ψ+〉

+eiθ |ψ−〉)
)

= (F−1
M ⊗ I)


 e−iθ√

2M

M−1∑

j=0

e2ijθ |j〉 |ψ+〉

+
eiθ√
2M

M−1∑

j=0

e−2ijθ |j〉 |ψ−〉




=
e−iθ√

2
(F−1
M |SM (θ/π)〉) |ψ+〉

+
eiθ√
2
(F−1
M |SM (1− θ/π)〉) |ψ−〉

Thus after the measurement in step 3, the algorithm
will always end in either of the two states |j〉 |ψ±〉.

Note that we’d like to restore this to the start-
ing state |0〉 |ψ〉, and that |〈ψ|ψ±〉|2 = 1/2 is a con-
stant. Since this overlap is constant, and since we
are working with two-dimensional subspaces, we can
restore the state using a scheme similar to that of
Temme et. al. [28], which was in turn inspired by
a scheme of Marriott and Watrous [16].1 That is,
given |ψ±〉, we first apply the projection operator
|ψ〉 〈ψ| = (Rψ + I)/2. We either obtain |ψ〉, in which
case we are done, or we obtain some |ψ⊥〉 so that
〈ψ|ψ⊥〉 = 0. Since |ψ⊥〉 can also be expressed in the
basis {|ψ+〉 , |ψ−〉}, we can again apply amplitude es-
timation to collapse the last register onto either |ψ+〉
or |ψ−〉. Then we repeat the projection onto |ψ〉.
Since the overlap between |ψ〉 and |ψ±〉 is constant,
the expected numbers of times we need to perform
the series of projections before attaining our desired
state |ψ〉 is constant as well.

This suggests the following algorithm for state
restoration:

1We thank Fernando Brandão for discussions related to this

point.

Algorithm 5 State restoration following amplitude
estimation.
Input: η > 0; either state |ψ+〉 or |ψ−〉; and
operators Rψ = 2 |ψ〉 〈ψ| − I and R = 2P − I,
where |ψ±〉 are the eigenstates of Q = −RψR with
eigenvalues e±2iθ.
Output: State |ψ〉.

1: while current state is not |ψ〉 do
2: Apply (Rψ + I)/2.
3: if current state is |ψ〉 then
4: Return |ψ〉.
5: end if

6: for i:=1 to q = O(log(1/η)) do
7: Add a new register |0〉i.
8: Apply operator (F−1

M ⊗I)ΛM (Q)(FM⊗I) on
subsystem |0〉i |ψ〉.

9: end for

10: Add register |0〉q+1 and apply the function that
maps the median of the first q registers to this
register.

11: Uncompute the first q registers.
12: Measure (q+1)-st register to obtain either |ψ+〉

or |ψ−〉.
13: end while

Performing amplitude estimation according to Algo-
rithm 4 with failure probability less than η/2, and
then performing state restoration according to Algo-
rithm 5 with failure probability less than η/2, gives
us an algorithm for nondestructive amplitude estima-
tion with probability of success at least 1− η:

Theorem 18. (Nondestructive amplitude estima-
tion) Given state |ψ〉 and reflections Rψ = 2 |ψ〉 〈ψ|−
I and R = 2P − I, and any η > 0, there exists a
quantum algorithm that outputs ã, an approximation
to a = 〈ψ|P |ψ〉, so that

|ã− a| ≤ 2π
a(1− a)

M
+

π2

M2

with probability at least 1−η and O(log(1/η)M) uses
of Rψ and R. Moreover the algorithm restores the
state |ψ〉 with probability at least 1− η.

5 Discussion and Applications

5.1 Applications to Partition Func-

tion Problems

In this section, following the treatment of [18]
and [25], we give several examples of problems from
statistical physics and computer science that can be
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framed as partition function problems. We then
show how our algorithm can be applied to obtain
a speedup. We obtain a quadratic improvement in
the scaling with ǫ due to Montanaro’s algorithm for
computing expectation values [18], and we obtain an
improvement in the scaling with graph parameters
due to the adaptive schedule of [25] and the QSA al-
gorithm of [31]. The results are summarized in Table
2 and elaborated below.

Counting k-colorings In the k-coloring problem,
we are given a graph G = (V,E) with maximum de-
gree ∆, and we’d like to count the number of ways
to color the vertices with k colors such that no two
adjacent vertices share the same color (in statistical
physics, this problem is also known as the antiferro-
magnetic Potts model at zero temperature). Here Ω
is the set of colorings of G, and for each σ ∈ Ω, H(σ)
is the number of monochromatic edges in σ. Thus we
have the partition function

Z(β) =
∑

σ∈Ω

e−βH(σ).

We know that |Ω| = Z(0) = k|V |, and we’d like to cal-
culate Z(∞), corresponding to the number of valid
k-colorings. Jerrum [9] showed that using Glauber
dynamics, a single site update Markov chain, it is pos-
sible to obtain mixing time O(|V | log |V |) whenever
k > 2∆. Thus our quantum algorithm can obtain
an approximation for the k-coloring problem in time
Õ(|V |3/2/ǫ), whereas the classical algorithm of SVV
scales like Õ(|V |2/ǫ2), and the partially quantum al-
gorithm of Montanaro scales like Õ(|V |3/2/ǫ+ |V |2).

Ising Model The Ising model on a graph G =
(V,E) is a model from statistical physics where we
place a spin at each vertex and assign each spin a
value of +1 or −1. The Hamiltonian counts the num-
ber of edges whose endpoints have different spins.
Here the space of possible assignments is given by Ω =
{±1}|V |, so |Ω| = Z(0) = 2|V |. The Ising model has
been extensively studied, and results such as [17, 19]
show that in certain regimes, Glauber dynamics
mixes rapidly, in time O(|V | log |V |). Thus our quan-
tum algorithm scales like Õ(|V |3/2/ǫ), while the clas-
sical algorithm of SVV [25] scales like Õ(|V |2/ǫ2), and
the partially quantum algorithm of Montanaro [18]
scales like Õ(|V |3/2/ǫ+ |V |2).

Counting Matchings A matching over a graph
G = (V,E) is a subset of edges that share no vertex
in common. Letting Ω denote the set of all matchings

over G, we then have a partition function of the form

Z(β) =
∑

M∈Ω

e−β|M |.

Then we know that Z(∞) = 1, and we seek to cal-
culate Z(0) = |Ω|. Here we would need to anneal
backwards in temperature; that is, if we had inverse
temperatures β0 = 0 < β1 < . . . < βℓ = ∞, we would
want to anneal in the reverse order,

Z(0) = Z(∞)
Z(βℓ−1)

Z(∞)

Z(βℓ−2)

Z(βℓ−1)
· · · Z(0)

Z(β1)
.

We would want to satisfy the Chebyshev condition in
reverse as well; that is, we’d like to have

Z(2βi − βi+1)Z(βi+1)

Z(βi)2
≤ B

Note that as in the case of the non-reversed schedule,
we take βℓ−1 = γ0 so that Z(γ0) = e in order to
satisfy the Chebyshev condition between βℓ−1 and
βℓ = ∞. Next we need to anneal backwards from
β = γ0 to β = 0. To do this we will modify the
partition function to

Z(β′) =
∑

x∈Ω

e(β
′−γ0)H(x)

and anneal forwards from β′ = 0, corresponding to
Z(β′ = 0) = Z(β = γ0) = e, to β′ = γ0, corre-
sponding to Z(β′ = γ0) = Z(β = 0) = |Ω|. Since
Z(β′) is still a convex function, the results from Ap-
pendix A and Section 2 guaranteeing the existence of
a quadratically shorter schedule satisfying the Cheby-
shev condition still apply. (Note that the original
paper by SVV [25] showed the existence of this cool-
ing schedule for logZ(β) a decreasing function, but
the argument in Appendix A applies equally well to
increasing convex functions.)

Jerrum and Sinclair [10] showed that the Markov
chain for computing matchings has mixing time
O(|V ‖E|). Since |Ω| = O(|V |! ·2|V |), our quantum al-
gorithm has complexity Õ(|V |3/2|E|1/2/ǫ), compared
to the Õ(|V |2|E|/ǫ2) complexity of SVV [25] and
the Õ(|V |3/2|E|1/2/ǫ + |V |2|E|) complexity of Mon-
tanaro [18].

Counting Independent Sets An independent set
on a graph G = (V,E) with maximum degree ∆ is a
set of vertices that share no edge. Letting Ω denote
the set of independent sets on G, and given a fugacity
λ > 0, we define

Z(β) =
∑

σ∈Ω

λ|σ|.
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Again we know that Z(∞) = 1, and we seek to calcu-
late Z(0) = |Ω|. As with the case of counting match-
ings, we can anneal backwards by modifying the par-
tition function.

Vigoda [29] showed that Glauber dynamics results
in a mixing time of O(|V | log |V |) whenever λ <
2/(∆ − 2). Since |Ω| = O(2|V |), our quantum algo-
rithm has complexity Õ(|V |3/2/ǫ), while the classical
algorithm of SVV [25] scales like Õ(|V |2/ǫ2), and the
algorithm of Montanaro [18] scales like Õ(|V |3/2/ǫ+
|V |2).

5.2 Warm Starts and Nonadaptive

Schedules

Montanaro’s quantum algorithm [18] is already a sort
of quantum version of SVV [25]. So why doesn’t it
already achieve what we do? Montanaro cites two re-
lated obstacles: warm starts and nonadaptive sched-
ules. In this section we will explain how warm starts
are used by SVV, and why SVV use nonadaptive
schedules to construct a schedule with warm starts.
For SVV this choice was not strictly necessary, but
rather due to the fact that they consider applications
to counting problems, where there is almost no addi-
tional cost to using nonadaptive schedules to ensure
warm starts. In the quantum case warm starts are
still desirable, but achieving them using nonadaptive
schedules is too costly, especially without the nonde-
structive amplitude estimation that we introduced in
Section 4. This led Montanaro to develop an algo-
rithm that still relied on SVV’s classical algorithm to
construct a schedule with warm starts, and then used
this schedule as input to the quantum walks.

We now explain these points in more detail.

Warm starts. The idea behind warm starts for
classical random walks is that the spectral gap (di-
rectly) controls convergence in the 2-norm while
applications usually require bounds in the 1-norm.
This norm conversion introduces some cost which is
greatly reduced by starting the random walk in a dis-
tribution that is close to the target distribution, aka
a “warm start.”

To make this more concrete, we define two notions
of distance between probability distributions. The
total variation distance is

‖Π1 −Π2‖TV =
1

2

∑

x∈Ω

|Π1(x)−Π2(x)|

and the L2 distance, which is also a variance, is

∥∥∥∥
Π1

Π2
− 1

∥∥∥∥
2

2,Π2

= VarΠ2
(Π1/Π2)

=
∑

x∈Ω

Π2(x)

(
Π1(x)

Π2(x)
− 1

)2

.

Now consider a Markov chain with stationary distri-
bution Π, and suppose that we run this Markov chain
on a starting distribution ν0 for t steps to obtain dis-
tribution νt. Letting δ be the spectral gap of the
Markov chain, we have

‖νt −Π‖TV ≤ e−δt/2
∥∥∥ν0
Π

− 1
∥∥∥
2,Π

(35)

(see, for example, SVV [25] Lemma 7.3). In partic-
ular, the idea behind warm starts is to pick a warm
start distribution ν0 so that the variance

∥∥ ν0
Π − 1

∥∥
2,Π

is bounded. A “cold start”, on the other hand,
would be a choice of ν0 that is far from Π, such
as putting probability 1 on a single point. Eval-
uating eq. (35) for such a distribution yields Al-
dous’s inequality [2], which bounds the mixing time
by ≤ δ−1 log(1/minxΠ(x)). Thus a warm start can
be seen as avoiding the term log(1/minxΠ(x)), which
often will be O(n) for a Markov chain on n bits.

The benefits of warm starts for quantum algo-
rithms, specifically that of Wocjan-Abeyesinghe [31],
are much higher. Indeed, a reflection about |Π〉 takes
time O(1/

√
δ), while mapping an arbitrary starting

state |ψ〉 to |Π〉 using a generalized Grover algo-
rithm takes O(1/| 〈ψ|Π〉 |) reflections. Szegedy [26]
and MNRS [15] perform such a series of reflections
to obtain a quantum walk search algorithm whose
runtime scales as O(1/

√
δminxΠ(x)), resulting in a

dependence on overlap that is exponentially worse
than the classical case in eq. (35). By annealing
through a judicious choice of starting states, Wocjan-
Abeyesinghe [31] avoid this term at the cost of in-
troducing a dependence on ℓ, the annealing schedule
length.

Nonadaptive schedules. SVV focus specifically
on the problem of approximate counting, not
Bayesian inference, so they can use nonadaptive
schedules to ensure warm starts at almost no addi-
tional cost. Suppose that we would like to construct
an adaptive temperature schedule of length ℓ. In the
case of approximate counting, where we need to esti-
mate each of the ℓ terms in eq. (7), we need O(ℓ/ǫ2)
(classical) samples at each temperature, incurring a
total cost of O(ℓ2/ǫ2). (Note that this oversimpli-
fies slightly and leaves out some additional factors.)
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Since a nonadaptive schedule has length O(ℓ2), tak-
ing one sample from each of the O(ℓ2) temperatures
would not lead to any asymptotic increase in cost.
For this reason SVV choose to begin with a nonadap-
tive schedule of length O(ℓ2), where each temperature
can be easily shown to provide a warm start for the
next. Then they can select a subset of ℓ tempera-
tures to repeatedly sample in order to estimate the
partition function.

Montanaro observed (see [18, Section 3.3]) that this
approach does not combine well with quantum walks.
Quantum walks cannot directly create states at a
given temperature without prohibitive cost, and the
no-cloning theorem means that we cannot keep copies
of the states produced along the way without recre-
ating them from scratch. If we need one copy of each
state at a sequence of ℓ temperatures then we need to
run a quantum walk (1+2+ . . .+ ℓ)/

√
δ = O(ℓ2/

√
δ)

times, which further increases to O(ℓ3/
√
δ) if we need

to select ℓ temperatures out of a list of ℓ2 tempera-
tures. (We ignore the dependence on accuracy and
error probability here for simplicity.)

Our strategy for constructing the ℓ-step adaptive
schedule never needs to create an O(ℓ2)-step non-
adaptive schedule, and this change did not require
major new ideas. However, it alone is not enough,
because without the ability to reuse states we would
still incur the O(ℓ2/

√
δ) cost described above.

Non-destructive amplitude estimation. The
missing ingredient in previous work is our Theo-
rem 6, which shows that amplitude estimation can be
made nondestructive. We use this both to create the
schedule and to estimate the terms Z(βi+1)/Z(βi) in
eq. (7). For Bayesian inference this is an important
piece of our speedup, as it allows us to achieve time
Õ(ℓ/

√
δ) instead of Õ(ℓ2/

√
δ). As a result it becomes

worthwhile to drop the nonadaptive schedule of SVV.
For approximate counting we cannot avoid an ℓ2 de-
pendence in our Õ(ℓ2/

√
δǫ) runtime, but dropping

the nonadaptive schedule does remove the additive
term of O(ℓ2/δ) that appeared in [18].

5.3 Conclusion

To summarize, we have shown how to combine quan-
tum simulated annealing with shorter adaptive an-
nealing schedules, resulting in a QSA algorithm that
displays a quadratic improvement in dependence on
both schedule length and inverse spectral gap when
compared against a nonadaptive classical annealing
algorithm. We have demonstrated applications to
Bayesian inference and estimating partition functions
of counting problems, and in the process we have also

shown that amplitude estimation can be made non-
destructive, a result that is useful in its own right.

This paper can be viewed as part of the broader
goal of finding quadratic (or other polynomial)
speedups of as many general-purpose classical algo-
rithms as possible. Grover’s algorithm can be in-
terpreted as a square-root speedup for exhaustive
search, and likewise there are easy quantum quadratic
speedups for rejection sampling. However, the best
classical algorithms for counting and Bayesian infer-
ence are much better than naive enumeration or re-
jection sampling. While simulated annealing with an
adaptive schedule is still a generic algorithm, it is of-
ten much closer to the state of the art, and so it is
worthwhile to try to find a quantum speedup for it.
We do not fully square root its runtime since our se-
quence length is essentially the same as the best clas-
sical result (instead of quadratically worse as in pre-
vious quantum results), but our runtime dependence
on accuracy and spectral gap are both quadratically
better than those of classical algorithms.

Within the paradigm of simulated annealing we
are unlikely to see further improvements in sequence
length or dependence on accuracy or spectral gap.
However, our algorithm for Bayesian inference does
improve on classical algorithms by returning a qsam-
ple instead of a classical sample. We hope that future
algorithms will use this fact to find further quantum
algorithmic advantages.

A Bounding the Length of the

Cooling Schedule

Here we provide the proof of Lemma 2, which is a
slight modification of Lemma 4.3 in SVV [25]. We
use this result to demonstrate the existence of a tem-
perature schedule satisfying the bounded variance
(12) and slow-varying (13) conditions, or equivalently
(14), and to bound the length of such a schedule.

Lemma 19. (Modified from SVV [25] Lemma 4.3)
For f a convex function over domain [0, γ], there ex-
ists a sequence γ0 < γ1 < . . . < γℓ with γ0 = 0 and
γℓ = γ satisfying

f

(
γi + γi+1

2

)
≥ f(γi) + f(γi+1)

2
− 1 (36)

with length

ℓ ≤
√

(f(0)− f(γ)) log

(
f ′(0)

f ′(γ) + 1

)
. (37)

Proof of Lemma 19. Suppose we have already con-
structed the sequence up to γi. Let γi+1 be the largest
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value in [γi, γ] so that γi and γi+1 satisfy equation
(36), and let mi = (γi + γi+1)/2, ∆i = (γi+1 − γi)/2,
and Ki = f(γi) − f(γi+1). Then, since γi+1 satisfies
equation (36),

f(mi) ≥
f(γi) + f(γi+1)

2
− 1. (38)

By convexity,

f ′(γi) ≤
f(γi+1)− f(γi)

γi+1 − γi
. (39)

We can rewrite this as

−f ′(γi) ≥
Ki

2∆i
. (40)

Also by convexity,

f ′(γi+1) ≥
f(mi)− f(γi+1)

mi − γi+1
. (41)

Combining this with equation (38),

−f ′(γi+1) ≤
Ki − 2

2∆i
(42)

and

−f ′(γi+1)− 1 ≤ Ki − 2

2∆i
− 1. (43)

Then, combining equations (40) and (42),

f ′(γi+1)

f ′(γi)
≤ 1− 2

Ki
≤ 1− 1

Ki
≤ e−1/Ki . (44)

Similarly, combining equations (40) and (43),

f ′(γi+1) + 1

f ′(γi)
≤ 1− 2 + 2∆i

Ki
≤ 1− 1

Ki
≤ e−1/Ki .

(45)
Summing the Ki,

ℓ−1∑

i=0

Ki = f(0)− f(γ). (46)

Summing equation (44) over Ki for i = 0 to ℓ − 2,
and adding equation (45) for i = ℓ− 1, we get that

ℓ−1∑

i=0

1

Ki
≤ log

(
f ′(0)

f ′(γ) + 1

)
. (47)

By the Cauchy-Schwarz inequality on equations (46)
and (47),

ℓ2 ≤ (f(0)− f(γ)) log

(
f ′(0)

f ′(γ) + 1

)
. (48)
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